C# 代码示例 =============== 本章会详细介绍DaoAI World SDK中包含的C#代码示例。 引入库 -------------- 在C#示例中,我们引入了以下几个库,其中 ``DaoAI.DeepLearningCLI`` 是用于引入DaoAI World SDK的库。 .. code-block:: C# using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Drawing; using System.Threading.Tasks; using DaoAI.DeepLearningCLI; 读取图片 ----------- DaoAI World SDK 的模型预测函数需要将图片表示为一维数组(1D array)。以下是从文件中读取图片的代码部分: .. code-block:: C# // Test image String root_directory = System.IO.Directory.GetCurrentDirectory(); System.Drawing.Bitmap image = new System.Drawing.Bitmap("C:\\Users\\daoai\\Downloads\\DW_SDK\\DW_SDK Example\\Data\\maskrcnn_data\\daoai_1.png"); //图片文件路径 System.Drawing.Bitmap image_copy = new System.Drawing.Bitmap(image); byte[] pixels = new byte[image.Width * image.Height * 3]; for (int i = 0; i < image.Height; i++) { for (int j = 0; j < image.Width; j++) { System.Drawing.Color color = image.GetPixel(j, i); pixels[(i * image.Width + j) * 3] = (byte)(color.R); pixels[(i * image.Width + j) * 3 + 1] = (byte)(color.G); pixels[(i * image.Width + j) * 3 + 2] = (byte)(color.B); } } 这里做了一个图片的深度拷贝,然后用 `DaoAI.DeepLearningCLI.Image` 函数初始化图像对象以便后续使用: .. code-block:: C# DaoAI.DeepLearningCLI.Image img = new DaoAI.DeepLearningCLI.Image(image.Height, image.Width, DaoAI.DeepLearningCLI.Image.Type.RGB, pixels); DaoAI.DeepLearningCLI.Image img_copy = img.clone(); byte[] image_data = img_copy.data; for (int i = 0; i < image.Width; i++) { for (int j = 0; j < image.Height; j++) { int index_r = i * image.Height + j; int index_g = i * image.Height + j + image.Width * image.Height; int index_b = i * image.Height + j + 2 * image.Width * image.Height; byte r = image_data[index_r]; byte g = image_data[index_g]; byte b = image_data[index_b]; System.Drawing.Color color = Color.FromArgb(r, g, b); image_copy.SetPixel(i, j, color); } } 加载深度学习模型 ------------------- .. code-block:: C# String data_path = "..\\..\\..\\..\\Data\\"; String model_path = data_path + "model.dwm"; // init model DaoAI.DeepLearningCLI.Vision.KeypointDetection model = new DaoAI.DeepLearningCLI.Vision.KeypointDetection(model_path); 注意,这里每一个检测任务都有对应的对象: .. code-block:: C# //实例分割 DaoAI.DeepLearningCLI.Vision.InstanceSegmentation model(model_path) = new DaoAI.DeepLearningCLI.Vision.InstanceSegmentation(model_path); //关键点检测 DaoAI.DeepLearningCLI.Vision.KeypointDetection model(model_path) = new DaoAI.DeepLearningCLI.Vision.KeypointDetection(model_path); //图像分类 DaoAI.DeepLearningCLI.Vision.Classification model(model_path) = new DaoAI.DeepLearningCLI.Vision.Classification(model_path); //目标检测 DaoAI.DeepLearningCLI.Vision.ObjectDetection model(model_path) = new DaoAI.DeepLearningCLI.Vision.ObjectDetection(model_path); //异常检测 DaoAI.DeepLearningCLI.Vision.AnomalyDetection model(model_path) = new DaoAI.DeepLearningCLI.Vision.AnomalyDetection(model_path); //语义分割 DaoAI.DeepLearningCLI.Vision.SemanticSegmentation model(model_path) = new DaoAI.DeepLearningCLI.Vision.SemanticSegmentation(model_path); //OCR DaoAI.DeepLearningCLI.Vision.OCR model(model_path) = new DaoAI.DeepLearningCLI.Vision.OCR(model_path); 使用深度学习模型进行预测 -------------------------- 这里定义了 置信度阈值(CONFIDENT_THRESHOLD)为 0.5, 并调用 model.inferece() 函数来使用模型进行推理,再使用 .toJSONString()方法 打印为 json .. code-block:: C# Dictionary post_params = new Dictionary(); post_params[DaoAI.DeepLearningCLI.PostProcessType.CONFIDENT_THRESHOLD] = 0.5; Console.WriteLine(model.inference(img, post_params).toJSONString()); 返回结果示例 ------------------ 以下是实例分割模型预测后返回的结果示例。主要结果包含在 `shapes` 列表中。 这个结果展示了预测的多边形点(points)、标签(label)以及群组ID(group_id)。这些信息可以用来进一步处理或分析预测的结果。 .. code-block:: json { "flags": {}, "shapes": [ { "label": "back", "points": [ [1525.5, 928.5], [1522.5, 931.5], [1528.5, 931.5], [1527.0, 930.0], [1527.0, 928.5] ], "group_id": 1, "description": "", "shape_type": "polygon", "flags": {} }, { "label": "front", "points": [ [1428.0, 798.0], [1429.5, 796.5], [1431.0, 796.5], [1432.5, 798.0], [1432.5, 801.0], [1431.0, 802.5], [1425.0, 802.5], [1423.5, 801.0], [1426.5, 798.0] ], "group_id": 0, "description": "", "shape_type": "polygon", "flags": {} }, ], "imageWidth": 1920, "imageHeight": 1200 }